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In [4]: import numpy as np
import matplotlib.pyplot as plt

Getting the simulated dataset

In [5]: np.random.seed(0)
1 = 30
Xs = np.random.randn(1)
ys = np.ones(1)
ys[xs < 0.4] =0

In [6]: plt.scatter(xslys == 1],yslys == 1],marker = 'x',s
plt.scatter(xslys == 0],yslys == 0],marker = 'x',s
plt.xlabel('x',size = 15)
plt.ylabel('Label’,size = 15)
plt.show()
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Assuming g(x) represents the sigmoid function

1
809 = e

A general form of logistic regression fits model of the form

1
h(x) = g(Xp) = T+ %P
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Hence again, like linear regression, we will create a X matrix from the data locations x to fit

the logistic Regression model.
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Exercise
Since
v = ( = 1 = h X)= ——
y=p(y=1) =hx) 7
can we still minimize
n
min (v - )’
i=1

to find the best set of f ?

Optimization problem we have to solve

When a random variable can only assume two possible outcomes, it is a Bernoulli Random
Variable. Hence, in the data above, since for every x, y can only be 0 or 1, so x is a Bernoulli
Random Variable.

In, order to find the best value of coefficients f, we will write the likelihood of observing the
data and then find the value of these [ coefficients that will maximize this likelihood.

The likelihood:
L = IT;jy =1 h(xi)Ijy =0 (1 — h(x;)) (1)

By maximizing L, A(x;) will be forced to be close to 1 when y; = 1 and A(x;) will be forced
to be close to 0 when y; = 0. Hence if
1
h(xi) =

1+ e XP

An algorithm maximizing L, will try to find coefficients f that makes h(x;) — 1 when y; =1,
and h(x;) > Owheny;, =0

Changing likelihood to negative log likelihood

Since maximizing the product terms in (1) is challenging, we convert (1) to an equivalent
problem form by taking a log (converts products to sum of terms) and multiplying a negative
1. So essentially, we have following equivalent problems

ml.;:le = mﬂin —log(L) = mﬁin LL where LL = —log(L)

http://localhost:8888/notebooks/1_Teaching/Fall_2022/MA506/22_Logistic_Regression2/22_Logistic_Regression2.ipynb Page 2 of 3



22_Logistic_Regression2 - Jupyter Notebook

LL = —log(L)
== Y log(h(x;)) — Y. log(1 = h(x;))
ily=1 ily;=0

== X [itostheen + (1 = ylog(t = hix)|

Hence we have to solve the optimization problem:

min LL = |min— 3} |yilog(h(x)) + (1 = y)log(1 = h(x,)|

where

h(x) = ————
) 1+ e %P

Remember

1. The above loss function is convex
2. Dont have a closed form solution like linear Regression
3. Hence, we use iterative algorithms to find the solution

In [ ]:
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