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Getting the simulated dataset
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Assuming g(x) represents the sigmoid function

A general form of logistic regression fits model of the form

Hence again, like linear regression, we will create a X matrix from the data locations x to fit
the logistic Regression model.
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import numpy as np
import matplotlib.pyplot as plt

np.random.seed(0)
l = 30
xs = np.random.randn(l)
ys = np.ones(l)
ys[xs < 0.4] = 0

plt.scatter(xs[ys == 1],ys[ys == 1],marker = '*',s = 100)
plt.scatter(xs[ys == 0],ys[ys == 0],marker = 'x',s = 100)
plt.xlabel('x',size = 15)
plt.ylabel('Label',size = 15)
plt.show()
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Exercise
Since

can we still minimize

to find the best set of  ?
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Optimization problem we have to solve

When a random variable can only assume two possible outcomes, it is a Bernoulli Random
Variable. Hence, in the data above, since for every x, y can only be 0 or 1, so x is a Bernoulli
Random Variable.

In, order to find the best value of coefficients , we will write the likelihood of observing the
data and then find the value of these  coefficients that will maximize this likelihood.

The likelihood:

By maximizing L,  will be forced to be close to 1 when  and  will be forced
to be close to 0 when . Hence if

An algorithm maximizing L, will try to find coefficients  that makes  when ,
and  when 
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Changing likelihood to negative log likelihood

Since maximizing the product terms in (1) is challenging, we convert (1) to an equivalent
problem form by taking a log (converts products to sum of terms) and multiplying a negative
1. So essentially, we have following equivalent problems
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Hence we have to solve the optimization problem:

where

Remember

1. The above loss function is convex
2. Dont have a closed form solution like linear Regression
3. Hence, we use iterative algorithms to find the solution
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